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Simulations with different lattice Dirac operators for valence and sea quarks
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We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a
‘‘mixed’’ action approach is to probe deeper the chiral regime of QCD by enabling simulations with light
valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive
fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence
quarks. The local Symanzik action for this mixed theory is derived toO(a), and the appropriate low energy
chiral effective Lagrangian is constructed, including the leadingO(a) contributions. Using this Lagrangian one
can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting
them to the lattice data.
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I. INTRODUCTION

In order to extract predictions of QCD from numeric
methods with controlled systematic errors, a lattice formu
tion is required for which the sources of deviations fro
QCD are understood and are under control. A signific
source of systematic errors for present day lattice simulat
are the light quark masses. Even the most powerful com
ers today do not allow simulations with up- and down-qua
masses as light as realized in nature. Instead one simu
with heavier quark masses and fits the analytic predicti
obtained in chiral perturbation theory (xPT) to the data. The
free parameters in the fit are the low energy constants ofxPT
@1#, and once they are determined an extrapolation to sm
quark masses is possible@2,3#. Still, to perform the chiral
extrapolation the quark masses must be small enough so
xPT is applicable. In practice one would require that ne
to-leading order~NLO! xPT describe the data reasonab
well.1

The present lattice simulations do not meet this requ
ment @4–6#. The data do not show the characteristic curv
ture predicted by NLOxPT. In fact the data show a rathe
linear behavior which either means that higher orders in
chiral expansion are not negligible or worse, one is not in
chiral regime at all~see Bernard’s part in@4#!. In either case,
simulations with lighter quark masses are required in orde
apply xPT with confidence.

Lattice simulations with light fermions, especially se
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1At next-to-next-to-leading order~NNLO! many new unknown

parameters enter the chiral Lagrangian, which greatly reduces
predictive power ofxPT.
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quarks, are computationally demanding and the numer
cost increases substantially with decreasing quark mas
Realistically only the least expensive fermions, Wilson a
Kogut-Susskind, can be used on sufficiently large and fi
lattices. Lattice fermions with better chiral properties are s
too expensive to be used as sea quarks, and this situati
not likely to change in the near future. It is neverthele
expected that the next generation of TFLOP machines
make it possible to generate a few sets of unquenched
figurations with sea quarks light enough to be in the ch
regime.

To obtain more information from these configuratio
they should~and will! be analyzed with various differen
valence quark masses, i.e. by studying partially quenc
~PQ! QCD. By including lattice measurements with light
valence quarks it is possible to penetrate further the ch
regime of QCD. This leads to more data points and wo
allow more reliable fits of PQxPT @7# to the lattice data@2#.
The reach of such simulations, however, is limited. The c
of light valence quarks also increases with the decreas
mass, and can become prohibitively high for quark mas
that are still not very small. This is particularly true for Wi
son fermions because of the explicit chiral symmetry bre
ing by the Wilson term.

An interesting idea for probing the chiral regime is to u
different lattice fermions for the valence and sea quarks
particular, by choosing lattice fermions with good chir
properties for the valence quarks, the valence quark mass
be made much smaller than in ordinary PQ simulations
central goal of this strategy is the same as of PQ QCD—
explore a larger portion of the chiral regime by extracti
more data points from a given set of unquenched configu
tions ~see Fig. 1!. This should result in more reliable est
mates for the low-energy constants ofxPT at NLO, the
Gasser-Leutwyler coefficients. Furthermore, one might
pect to reduce the size of explicit chiral symmetry break

he
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by using Ginsparg-Wilson fermions at least for the valen
quarks. This is a computationally affordable compromise
the lattice theorist’s ideal of using Ginsparg-Wilson fermio
for both valence and sea quarks.

In this paper we construct the low-energy chiral effect
theory for a ‘‘mixed’’ lattice action, with explicit dependenc
on powers of the lattice spacinga by first constructing the
appropriate local Symanzik action. There are several rea
for taking this approach. First, the defining non-orthod
feature of the mixed action approach—the use of differ
Dirac operators for the sea and valence sectors—is pure
lattice artifact. This is a consequence of the fact that by c
struction all proper lattice fermions reproduce the same c
tinuum physics, and therefore all mixed lattice theories
duce to PQ QCD in the continuum limit. An expansion ina
is thus a natural tool to investigate potential peculiarities
the mixed action formulation. Second, a theoretical und
standing of thea dependence in lattice simulations can gui
the continuum limit, or allow the extraction of physical in
formation directly from the lattice data, without taking th
continuum limit first. Third,xPT provides a useful frame
work for studying the chiral symmetry breaking due to t
discrete space-time lattice. Effective theories of this ty
have been studied in several similar contexts@8–11#.

What is dubbed here ‘‘mixed action methods’’ refers to
class of lattice theories corresponding to different choices
Dirac operators for the valence and sea quarks. In the
section we use a fairly simple example to illustrate the g
eral framework of mixed lattice theories. We consider Wils
fermions for the sea quarks, together with valence fermi

FIG. 1. Qualitative representation of the space of quark mas
The ‘‘chiral regime,’’ where PQxPT can be applied, is the quarte
circular region. The upper right rectangle, limited by the dash
line, describes the part of the space covered by present simulat
As current data suggest, there is very little or no overlap betw
that rectangle and the chiral regime. It is expected that improvem
in algorithms and computer power will allow reducing the sea a
valence quark masses in PQ simulations, as is represented b
enlargement of the previous rectangle. It is possible that the c
region will be penetrated by such simulations, as shown by
small section of overlap between the enlarged rectangle and
chiral region. Finally, using chiral valence fermions in a mix
action simulation would make it possible to extend the reach
simulations significantly in the direction of lighter valence quark
11450
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that satisfy the Ginsparg-Wilson relation. To describe the
tice action close to the continuum limit we construct t
local Symanzik effective action up toO(a). The usual argu-
ments used in the formulation ofxPT are then applied to
this effective action. This leads to a chiral expansion
which the dependence on the lattice spacing is explicit.

II. THE CHIRAL EFFECTIVE ACTION

A. Lattice action

In the following we always consider a hyper-cubic E
clidean space-time lattice with lattice spacinga. We assume
either an infinite lattice or a finite lattice large enough th
one can safely ignore finite volume effects.

The mixed lattice action that describesNf Wilson sea and
NV Ginsparg-Wilson valence fermions has the structure

SM5SYM@U#1SW@c̄S ,cS ,U#1SGW@c̄V ,cV ,U#. ~1!

U denotes the gauge field defined on the links of the latt
cS (c̄S) are the sea quark~anti-quark! fields andcV (c̄V)
denote vectors withNV anti-commuting valence quarks~anti-
quarks! andNV c-number-valued ghost quarks~anti-quarks!.

The precise choice for the gauge field actionSYM is irrel-
evant in the following, so we leave it unspecified. For the s
quarks we choose the Wilson action@12#, given by

SW5a4(
x

c̄S~DW1mSea!cS~x!, ~2!

DW5
1

2
$gm~¹m* 1¹m!2ar¹m* ¹m!%, ~3!

wheremSeadenotes theNf3Nf quark mass matrix in the se
sector andr the Wilson parameter.¹m* , ¹m are the usual
covariant, nearest neighbor backward and forward differe
operators.

The action for the valence and ghost quarks is given b

SGW5a4(
x

c̄VH DGW1mValS 12
1

2
aDGWD J cV~x!. ~4!

The valence and ghost quark masses are contained in
2NV32NV mass matrix mVal of the form mVal
5diag(MVal ,MVal) where MVal is an NV3NV matrix ~i.e.
each valence quark has a corresponding ghost field with
same mass!. The Dirac operatorDGW is assumed to be a
local operator satisfying the Ginsparg-Wilson relation@13#

g5DGW1DGWg55aDGWg5DGW . ~5!

Both the fixed-point Dirac operator and the overlap opera
satisfy this relation@14–16#. For the following discussion
however, there is no need to specifyDGW any further.

B. Flavor symmetry of the lattice action

When mSea50, mVal50, andr 50, the flavor symmetry
group ofSM is
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SIMULATIONS WITH DIFFERENT LATTICE DIRAC . . . PHYSICAL REVIEW D 67, 114505 ~2003!
SU~Nf !L ^ SU~Nf !R^ SU~NVuNV!L ^ SU~NVuNV!R .
~6!

To see this it is convenient to writeSGW andSW in terms of
chiral components. The right- and left-handed sea qu
fields are defined with the usual projectors1

2 (16g5). For the
valence and ghost fields, one first defines the Hermitian
erator

ĝ55g5~12aDGW!, ~7!

which is unitary as a consequence of Eq.~5!. Valence right-
and left-handed fields are now defined by@17#

c̄V,R5c̄V

1

2
~12g5!, cV,R5

1

2
~11ĝ5!cV , ~8!

c̄V,L5c̄V

1

2
~11g5!, cV,L5

1

2
~12ĝ5!cV . ~9!

The fermionic actions can now be rewritten as

SW5a4(
x

c̄S,L

1

2
gm~¹m1¹m* !cS,L~x!1c̄S,R

1

2
gm~¹m

1¹m* !cS,R~x!1c̄S,LS mSea2
1

2
ar¹m¹m* DcS,R~x!

1c̄S,RS mSea
† 2

1

2
ar†¹m¹m* DcS,L~x!, ~10!

and

SGW5a4(
x

c̄V,LDGWcV,L~x!1c̄V,RDGWcV,R~x!

1c̄V,LmValcV,R~x!1c̄V,RmVal
† cV,L~x!. ~11!

Here, for reasons that will become clearer shortly, we c
sider mSea, mVal and r to be matrices in flavor space, an
identify the parameters that appear between right-han
anti-quarks and left-handed quarks as their Hermitian co
gates.

Clearly, whenmSea5mVal5r 50, Eqs.~10! and ~11! are
invariant under independent global rotations of the le
handed and right-handed components of all quark fields:

cX,x→gX,xcX,x , c̄X,x→c̄X,xgX,x
† , X5S,V, x5L,R,

~12!

wheregS,L andgS,R are inSU(Nf), while gV,L andgV,R are
in SU(NVuNV). We conclude that flavor transformations b
longing to the group in Eq.~6! are symmetries of the actio
Eq. ~1! broken by the mass termsmVal and mSea and the
Wilson termr.

It is convenient to treat these symmetry breaking para
eters as spurion fields, i.e. assuming the transformation r
11450
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mVal→gV,LmValgV,R
† , mVal

† →gV,RmVal
† gV,L

† ,

mSea→gS,LmSeagS,R
† , mSea

† →gS,RmSea
† gS,L

† ,
~13!

r→gS,LrgS,R
† , r †→gS,Rr †gS,L

† .

The mixed actionSM , even with non-vanishing mass an
Wilson terms, is invariant under the combined transform
tions Eqs.~12!,~13!.

To complete this part we note that for a transformation
be a symmetry of the theory it must also leave unchanged
integration measure in the functional integral. It is a simp
matter to show that the measure for the sea Wilson fermi
is invariant under the global rotations in Eq.~12!. The situ-
ation for the valence quarks is not quite so simple becaus
the operatorĝ5 in the chiral variation. It turns out, howeve
as has been shown in Ref.@18#, that the measure is indee
invariant under the symmetry transformations conside
here—the flavor non-singlet transformations. The last sta
ment can be extended to the full valence sector, including
ghost fields.2

C. Symanzik action

We construct Symanzik’s local effective theory whic
close to the continuum, describes the same long-range p
ics as the discrete lattice action well below the moment
cutoff 1/a @21–24#.

Since the continuum actionSS is designed to reproduc
the same long-range correlation functions as the discrete
tice actionSM , it must have the same symmetries@Eq. ~6!#
as the underlying theory. Up toO(a), the quark operators
that enter are of mass dimensions 3, 4, and 5, which incl
only quark bilinears. Moreover, the independent symme
transformations acting separately on the sea and valence
tors requires that the quark bilinears do not mix the sect
This implies that up toO(a), the fermionic operators inSS
~as inSM) are of two types—one built of sea quarks only a
one of valence quarks.

It is straightforward to write down theO(a) Symanzik
actionSS using previous results concerning Wilson fermio
@25,26# and Ginsparg-Wilson fermions@17#. The details of
the analysis are deferred to Appendix A—here we only qu
the result~for the fermionic part of the action!:

SS5E d4x@c̄V~D1m̃Val!cV1c̄S~D1m̃Sea!cS

1acSWc̄SsmnFmncS#1O~a2!. ~14!

2The symmetry group that we write here is not the true symme
group of the quantized theory. As discussed in@19,20#, the presence
of ghost fields in the functional integral leads to constraints on
allowed symmetry transformations. However, for the derivation
the correct chiral Lagrangian it is possible to use the symme
group in Eq.~6! @20#.
5-3
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BÄR, RUPAK, AND SHORESH PHYSICAL REVIEW D67, 114505 ~2003!
m̃Val and m̃Sea are renormalized masses. Two consequen
of the exact chiral symmetry of the massless Ginspa
Wilson fermions are:~a! there is no Pauli termc̄smnFmnc
for the valence sector, and~b! the valence quark mass is on
multiplicatively renormalized. No symmetry protects th
Wilson sea quarks from getting an additive correction of
order of the cutoff 1/a.

It is useful at this point to collect the quark fields in
single quark field vectorC, and rewrite Eq.~14! as

SS5E C̄~D1m!C1C̄acSWsmnFmnC1O~a2!, ~15!

C5S cS

cVD , m5S m̃Sea

m̃Val
D , acSW5S acSW

0D .

~16!

D. Symmetries ofSS and xPT for the mixed action

We now turn to the construction of a low-energy effecti
theory for the ‘‘underlying’’ Symanzik action in Eq.~15!.
The method is completely analogous to the construction
the chiral Lagrangian in QCD@27#.3 The idea is that the
spontaneous breaking of the approximate chiral symm
gives rise to light pseudo Goldstone bosons, the light m
sons, which at low energies are the only relevant degree
freedom. The effective action is written in terms of loc
interactions of the pseudo-Goldstone fields. Since
pseudo-Goldstone bosons interact weakly at low energ
the action can be organized in a perturbative series.

All observables calculated are expanded in two small
rameters,

e;
p2

Lx
2

;
m̂

Lx
2

and d;
â

Lx
2

, ~17!

wherep is the light meson momentum,Lx;1 GeV is the
chiral symmetry breaking scale, andm̂ and â stand for ma-
trix elements of4

m̂[2B0m, â[2W0acSW. ~18!

3It should be noted that as of yet the construction of P
xPT from PQ QCD is not as well justified as the standard deri
tion of xPT from QCD. The arguments of the latter cannot
trivially extended to PQ QCD because they rely, in part, on
existence of a Hilbert space of physical states with a positive d
nite norm, which is absent in the presence of ghost fields. The s
is also true for the mixed action. The validity of thexPT for the
mixed action is thus on the same footing as that of PQxPT, which
has been discussed in@20#.

4Though the notation might obscure this fact,m̂ and â both have
mass dimension 2—they are the leading contributions to
squared mass of the pseudo Goldstone boson. We nevertheles
this notation as it makes the dependence on the quark masse
the lattice spacing more transparent.
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B0 and W0 are dimensionful low-energy constants that a
pear in the effective theory at leading order@see Eq.~B1!#.
They depend only on the high-energy scaleLx , and dimen-
sional analysis reveals that the perturbative expansion i
fact in mq /Lx andaLx . We follow Ref.@9# and choose the
$e,d% terms as leading order~LO! and the$e2,ed% terms as
NLO in the effective Lagrangian, droppingO(a2) contribu-
tions. The underlying hierarchy consistent with this orderi
is $e,d%@$e2,ed%@d2, and the last inequality also implie
e@d. This ordering is chosen for convenience and is som
what arbitrary. In practice, the double expansion should
organized according to the actual relative sizes of the qu
masses and the lattice spacing.

The effective Lagrangian is constructed from all operat
that respect the symmetries of the underlying actionSS . The
compact notation of Eq.~15! makes it easy to see that th
symmetry group ofSS to O(a) is

SU~Nf1NVuNV!L ^ SU~Nf1NVuNV!R . ~19!

This symmetry group~treatingm̂ and â as spurion fields!
is the same as that of PQ QCD with Wilson fermions. Inde
the effective actionSS in Eq. ~15! is the same as the effectiv
Symanzik action for the PQ QCD Wilson action of Ref.@9#,
with a specific choice ofacSW that has support only in the
sea sector. This fortunate similarity between the mixed ac
theory and the PQ QCD Wilson theory implies thatthe mixed
low-energy chiral effective action has the same structure, at
O(a), as the action of WilsonxPT, introduced inRef. @9#,
with the restriction that acSW vanishes in the valence-gho
sector. The chiral Lagrangian toO(a), which describes both
WxPT and the mixed effective theory, is provided in Appe
dix B.

E. Application: Meson mass

In this subsection we give an example for the use of
mixed chiral Lagrangian. For simplicity we take all the s
quarks and all the valence quarks to be~separately! degen-
erate, and the Wilson parameter to be a flavor singlet in
sea sector. This amounts to setting

m̂5diag~m̂Sea,m̂Val!, â5diag~ â,0!. ~20!

The number of sea quark flavors is taken to beNf53. We
consider the expression for the mass of the flavor char
meson with valence quark flavor indicesAB(AÞB) to NLO.
Using the relation between the mixed chiral effective theo
and WxPT, one can obtain the result straightforwardly
taking the mass formula from Ref.@9# with the values form̂
and â given by Eq.~20!. We find

~MAB
2 !NLO5m̂Val1

m̂Val

48f 2p2
@m̂Val2m̂Sea2â1~2m̂Val2m̂Sea

2â!ln~m̂Val!#2
8m̂Val

f 2
@~L522L8!m̂Val13~L4

22L6!m̂Sea13~W42W6!â#. ~21!
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SIMULATIONS WITH DIFFERENT LATTICE DIRAC . . . PHYSICAL REVIEW D 67, 114505 ~2003!
Here, the parametersLi are the Gasser-Leutwyler coeffi
cients, andW4 and W6 are additional low-energy constan
that enter the chiral Lagrangian at NLO. Note that forâ50
the expression for PQxPT ~calculated in@2,28,29#! is re-
covered.

Equation ~21! demonstrates the analytic connection b
tween QCD and the simulated mixed action theory. It sho
the latter to be a calculation with controlled systematic
rors. From fitting the equation to the appropriate data fr
numerical simulations one can obtain an estimate for
linear combinations of Gasser-Leutwyler coefficients that
pear in it.

Examining Eq.~21! one can also appreciate the potent
advantage of using a mixed lattice action. In simulations
ing Wilson fermions in both sea and valence sectors,
equation similar to Eq.~21! holds @see Eq.~B5!#. In that
case, the range of valence quark masses that can be s
lated might be too small to convincingly show the curvatu
coming from the quadratic dependence and the logarith
that enter at NLO. By using Ginsparg-Wilson fermions f
the valence quarks one can vary the valence quark ma
over a wider range. The expected NLO curvature, on wh
the extraction of the Gasser-Leutwyler coefficients depen
is consequently much more likely to be seen.

Finally, comparison with the result for WxPT, Eq.~B5!,
reveals that the latter depends on twice the number ofWi
coefficients. This is fortunate for the mixed theory as
makes the predictions of the effective theory less depen
on parameters that have no particular relevance to QCD

To understand this simplification in the expression for
meson mass, consider the relation between the symmetri
the mixed action and those of PQ Wilson action. On the o
hand the massless mixed theory has exact chiral symmet
the valence sector, which the Wilson action does not. On
other hand, the valence and sea quarks of the Wilson ac
have the same type of Dirac operator which allows mix
between the sectors—a transformation which is not a s
metry of the mixed action formulation. AtO(a), however,
the breaking of the sea-valence symmetry in the mix
theory does not yet show up, and thus the simpler exp
sions arise due to the larger chiral symmetry.

III. SUMMARY

In this paper we discuss lattice simulations with differe
fermions for sea and valence quarks. As a particular exam
we have studied here the case with Wilson sea quarks
Ginsparg-Wilson valence quarks. Using Symanzik’s effect
action for lattice theories as an intermediate step, we h
derived the form of the low-energy chiral Lagrangian for t
mixed theory toO(a). The construction shows that simula
tions with the mixed action provide as controlled an appro
mation to QCD as partially quenched simulations. This is
be expected since the mixed action reduces to PQ QCD
the continuum limit.

The goal of the mixed action approach is similar to that
PQ QCD. The use of smaller valence quark masses all
one to probe deeper the chiral regime of QCD and ob
additional information on the low-energy constants, t
11450
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Gasser-Leutwyler coefficients. Furthermore, the use of ch
lattice fermions in the valence sector, instead of Wilson f
mions, makes it possible to simulate much lighter valen
quarks. This leads to more data points obtained on the la
and consequently to more reliable fits ofxPT to the data.

Here we have demonstrated the mixed action approach
Wilson sea quarks and Ginsparg-Wilson valence quarks
ing into account the leadingO(a) contributions. An impor-
tant extension of this analysis is the inclusion ofO(a2) ef-
fects. First of all, the lattice spacing determined by t
unquenched configurations is possibly not small enough
safely neglect theO(a2) corrections. If one wants to fit the
lattice data directly to equations like Eq.~21! without taking
the continuum limit first, theO(a2) corrections should be
included to obtain better fits. Second, theO(a) effects are
generated here only by the Wilson sea quarks. Many
quenched simulations are in fact performed with no
perturbativelyO(a)-improved Wilson fermions for the se
quarks. The leading corrections for these simulations are
O(a2) and need to be computed in order to know how t
continuum limit is approached.

While valuable, it should also be noted that the inclusi
of O(a2) effects in the chiral Lagrangian framework is like
to be a hard task. The main difficulty arises from the ma
new operators that enter the Symanzik action at this or
Some of these operators break Lorentz invariance, while s
eral others break the chiral symmetry and require the in
duction of additional spurion fields.

The approach proposed here should be also studied
other combinations for the lattice fermions. In particular, t
case with staggered sea quarks is interesting, since stagg
fermions are computationally cheaper. At present the ligh
dynamical quark masses are achieved with staggered fe
ons. It is well known that applying staggered fermions
QCD involves a theoretical uncertainty and is possibly u
controlled. Consequently, predictions from chiral perturb
tion theory for staggered fermions would also serve as a
of this discretization method@7#.

Finally, the cost of simulations of a mixed action
roughly the sum of the cost of generating a set of u
quenched gauge field configurations plus that of analyz
quenched simulations with Ginsparg-Wilson fermions. Th
we can expect that in the near future simulations with
mixed action will become feasible.

ACKNOWLEDGMENTS

We acknowledge support in part by U.S. DOE grants D
FC02-94ER40818, DE-AC03-76SF00098, DE-FG0
96ER40956/A006 and DE-FG02-91ER40676. We tha
Maarten Golterman and Steve Sharpe for their comments
this manuscript. G.R. would like to thank the Department
Physics, Boston University and the Benasque Center for
ence, Benasque, Spain for kind hospitality during part of t
work.

APPENDIX A: SYMANZIK ACTION FOR THE WILSON
AND GINSPARG-WILSON ACTIONS

In this appendix we derive Eq.~14! for the Symanzik
action describing the mixed theory toO(a). As has been
5-5
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BÄR, RUPAK, AND SHORESH PHYSICAL REVIEW D67, 114505 ~2003!
stated in the text, to this order the Symanzik action is sim
the sum of the local effective actions for the valence and
sea sectors.

The local Symanzik action for Wilson fermions has be
derived in @25,26#. One first lists all the operators of mas
dimension no greater than 5, which respect the symme
of the Wilson lattice action~the appropriate power ofa is
inserted to complete the dimensions of terms in the Lagra
ian to 4!. The operators of dimension 4~which area inde-
pendent! make up, by construction, the continuum action
QCD.

Because the Wilson term explicitly breaks the chiral sy
metry, it is expected that the quark mass be additively ren
malized, and the size of the correction should be of the or
of the cutoff scale 1/a. Indeed, the only dimension 3 operat
is c̄c, which appears in the action with a coefficient prop
tional to 1/a and has precisely this effect.

There are several operators of mass dimension 5 tha
allowed by the symmetries. Some of these operators ca
eliminated using the leading order equations of motion. O
ers have the same structure as the mass and kinetic ope
that already appear in the QCD action, and have the effec
renormalizing the quark masses and the gauge coupling
nally, a single term is left—the Pauli term:c̄smnFmnc. Note
that the Pauli term breaks the chiral symmetry, and is the
fore allowed only because of the Wilson term. Putting it
together, the Symanzik action for the Wilson sea sector

E d4x@c̄S~D1m̃Sea!cS1acSWc̄SsmnFmncS#1O~a2!,

~A1!

wherem̃Seais the renormalized sea quark mass, andcSW is an
unknown coefficient.

The analysis for the Ginsparg-Wilson valence quarks
similar. This may seem confusing due to the fact that som
the chiral projectors on the lattice are written in terms ofĝ5,
and notg5 as in the continuum theory. However, it has be
shown in Refs.@30,31#, that the chiral symmetry of the
Ginsparg-Wilson lattice action leads to exactly the same
ral Ward identities which appear in the continuum. Hence,
imposing the usual chiral symmetry on the Symanzik acti
the effective theory correctly reproduces the consequence
the lattice chiral symmetry.
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Due to the exact chiral symmetry the valence quark m
gets renormalized only multiplicatively and the Pauli term
absent. Consequently, after considering the renormalizat
of gauge coupling and quark masses, the Symanzik ac
for the valence Ginsparg-Wilson quarks contains noO(a)
part @the Ginsparg-Wilson lattice action is automatica
O(a) improved@17##:

E d4x@c̄V~D1m̃Val!cV#1O~a2!. ~A2!

Equation~14! is the sum of Eq.~A1! and Eq.~A2!.

APPENDIX B: W xPT RESULTS

We present the WxPT Lagrangian which also describe
the mixed theory toO(a). Interested readers should consu
Ref. @9# for further details on WxPT. We also provide the
expression for the mass of a flavor charged meson for c
parison with the mixed theory result.

The WxPT Lagrangian is constructed out of operato
that respect all the symmetries of the underlying theory
Eq. ~15!, with explicit flavor axial symmetry breaking term
constructed out ofm̂ andâ. As described in the text, the LO
Lagrangian is linear ine andd:

L25
f 2

4
^]S]S†&2

f 2

4
^~m̂1â!S†1S~m̂†1â†!&.

~B1!

Here the angled brackets stand for the super-trace over
flavor indices:

^G&5str~G!5(
i

h iG i i ,

h i5H 1, i is a quark flavor index,

21, i is a ghost flavor index,
~B2!

andS5exp(2iP/f) is a non-linear representation of the m
son fields.

The NLO Lagrangian is5
L452L1^]S]S†&22L2^]mS]nS†&^]mS]nS†&2L3^~]S]S†!2&1L4^]S]S†&^m̂S†1Sm̂†&1W4^]S]S†&^âS†1Sâ†&

1L5^]S]S†~m̂S†1Sm̂†!&1W5^]S]S†~ âS†1Sâ†!&2L6^m̂S†1Sm̂†&22W6^m̂S†1Sm̂†&^âS†1Sâ†&

2L7^m̂S†2Sm̂†&22W7^m̂S†2Sm̂†&^âS†2Sâ†&2L8^m̂S†m̂S†1Sm̂†Sm̂†&2W8^âS†m̂S†1Sâ†Sm̂†&. ~B3!

These Lagrangians describe both the mixed and the PQ Wilson lattice actions. In the mixed theoryâ has support only in the

5There has been an error in Ref.@9# in the sign of some of the terms inL4. The form that appears here is the correct one.
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sea-sea sector. We comment that Eqs.~B1!, ~B3! contain ordinaryxPT. Moreover, since the low-energy constantsLi ’s and
Wi ’s are independent ofm̂ and â and this theory becomes the familiarxPT in the sea-sea sector whena→0, theLi ’s are
exactly the Gasser-Leutwyler coefficients of ordinaryxPT.

Next, we provide the WxPT expression for the mass of the flavor charged meson defined in Sec. II E. We consider th
where

m̂5diag~m̂Sea,m̂Val!, â5diag~ âSea,âVal! ~B4!

@compare with Eq.~20!#. One obtains

~MAB
2 !NLO5~m̂Val1âVal!1

~m̂Val1âVal!

48f 2p2
@~m̂Val1âVal!2~m̂Sea1âSea!1„2~m̂Val1âVal!2~m̂Sea1âSea!…ln~m̂Val1âVal!#

2
8m̂Val

f 2
@~L522L8!m̂Val13~L422L6!m̂Sea13~W42W6!âSea#2

8âVal

f 2
@~L51W522W8!m̂Val13~L4

2W6!m̂Sea#. ~B5!

To obtain the expression appropriate for common lattice simulations, in which the Wilson term is the same for all flavo
setsâVal5âSea in the last equation. The meson mass for the mixed action@Eq. ~21!# can be obtained by settingâVal50.
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